🔍문제
오늘도 서준이는 깊이 우선 탐색(DFS) 수업 조교를 하고 있다. 아빠가 수업한 내용을 학생들이 잘 이해했는지 문제를 통해서 확인해보자.
N개의 정점과 M개의 간선으로 구성된 무방향 그래프(undirected graph)가 주어진다. 정점 번호는 1번부터 N번이고 모든 간선의 가중치는 1이다. 정점 R에서 시작하여 깊이 우선 탐색으로 노드를 방문할 경우 노드의 방문 순서를 출력하자.
깊이 우선 탐색 의사 코드는 다음과 같다. 인접 정점은 오름차순으로 방문한다.
🤔발상
간단한 dfs 구현 문제인데, 여러 개념들을 복습할 수 있을 것 같아 연습 겸 풀어보았습니다.
1. 그래프 탐색을 위한 그래프 자료구조 구현
2. bfs, dfs 탐색 구현
1. bfs 탐색에는 queue를 사용
3. 방문 순서는 클래스 레벨에서 전역변수로 관리, 노드번호를 인덱스로 배열에 저장해서 출력
🔦입출력
정점의 최대 수가 100,000입니다. 메모리 제한이 512mb이며 dfs는 재귀호출로 함수 내의 지역변수가 메모리에 저장됩니다. 불필요한 변수선언을 하지 않도록 주의합니다.
📃의사코드
- 데이터 입력
- dfs 탐색
- 연결노드 탐색 시, 정렬순서로 탐색
- 방문 순서를 저장
- 결과 출력
# 👨💻코드
import java.util.*;
import java.io.*;
public class Main{
public static void main(String[] args) throws IOException{
try (BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out))) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int start = Integer.parseInt(st.nextToken());
Graph graph = new Graph(n, m, start);
graph.init(br);
graph.dfs(start, new boolean[n + 1]);
bw.write(graph.getResult());
}
}
}
class Graph {
List<List<Integer>> graph;
int start;
int nodeCount;
int edgeCount;
boolean[] visited[];
int[] visitOrder;
int visitIndex;
Graph(int v, int e, int s) {
nodeCount = v;
graph = new ArrayList<>();
for (int i = 0; i <= v; i++) {
graph.add(new ArrayList<>());
}
visitOrder = new int[v + 1];
this.edgeCount = e;
this.start = s;
}
public void init(BufferedReader br) throws IOException {
for (int i = 0; i < edgeCount; i++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int src = Integer.parseInt(st.nextToken());
int dest = Integer.parseInt(st.nextToken());
graph.get(src).add(dest);
graph.get(dest).add(src);
}
}
public void dfs(int node, boolean[] visited) {
visited[node] = true;
visitOrder[node] = ++visitIndex;
List<Integer> integers = graph.get(node);
integers.sort(Integer::compareTo);
for (Integer nextNode : integers) {
if (visited[nextNode]) {
continue;
}
visited[nextNode] = true;
dfs(nextNode, visited);
}
}
public void bfs(int node) {
boolean[] visited = new boolean[nodeCount];
Queue queue = new LinkedList<Integer>();
queue.add(node);
while (!queue.isEmpty()) {
Integer cur = (Integer) queue.poll();
visited[cur] = true;
for (Integer nextNode : graph.get(cur)) {
if (visited[nextNode]) {
continue;
}
visited[nextNode] = true;
queue.offer(nextNode);
}
}
}
public String getResult() {
StringBuilder sb = new StringBuilder();
for (int i = 1; i < visitOrder.length; i++) {
sb.append(visitOrder[i]).append("\n");
}
return sb.toString();
}
}
🚀TIL
- 하나의 자료구조도 문제의 요구사항에 맞춰 적합한 구현형태가 다르다보니 하나의 풀이만 존재하지 않는 것 같습니다.
- 자주 사용하지 않으면 잊어버리므로 자주 복습하도록 노력해야겠습니다.